在核成像中,有限的分辨率会导致影响图像清晰度和定量准确性的部分体积效应(PVE)。已证明来自CT或MRI的高分辨率解剖信息的部分体积校正(PVC)已被证明是有效的。但是,这种解剖学引导的方法通常需要乏味的图像注册和分割步骤。由于缺乏具有高端CT和相关运动伪像的混合体SPECT/CT扫描仪,因此很难获得准确的分段器官模板,尤其是在心脏SPECT成像中。轻微的错误注册/错误分段将导致PVC后的图像质量严重降解。在这项工作中,我们开发了一种基于深度学习的方法,用于快速心脏SPECT PVC,而无需解剖信息和相关的器官分割。所提出的网络涉及密集连接的多维动态机制,即使网络经过充分训练,也可以根据输入图像对卷积内核进行调整。引入了心脏内血容量(IMBV)作为网络优化的附加临床损失函数。提出的网络表明,使用Technetium-99M标记的红细胞在GE发现NM/CT 570C专用心脏SPECT扫描仪上获得的28个犬类研究表现有希望的表现。这项工作表明,与没有这种机制的同一网络相比,具有密集连接的动态机制的提议网络产生了较高的结果。结果还表明,没有解剖信息的提出的网络可以与解剖学引导的PVC方法产生的图像产生具有统计上可比的IMBV测量的图像,这可能有助于临床翻译。
translated by 谷歌翻译
单光子发射计算机断层扫描(SPECT)是一种广泛应用的成像方法,用于诊断冠状动脉疾病。从计算机断层扫描(CT)得出的衰减图(U-MAP)用于衰减校正(AC),以提高心脏SPECT的诊断准确性。但是,SPECT和CT是在临床实践中依次获得的,这可能会导致两项扫描之间的误会。卷积神经网络(CNN)是医疗图像注册的强大工具。先前基于CNN的跨模式注册方法直接串联了两个输入模态作为早期特征融合或使用两个单独的CNN模块提取的图像特征,以进行晚期融合。这些方法不能完全提取或融合交叉模式信息。此外,以前尚未对心脏SPECT和CT衍生的U-MAP的深度学习刚性注册进行研究。在本文中,我们提出了一个双分支挤压融合 - 兴奋(DUSFE)模块,用于对心脏SPECT和CT衍生的U-MAP的注册。 Dusfe融合了从多种模态的知识,以重新校准每种模式的通道和空间特征。 Dusfe可以嵌入多个卷积层,以在不同的空间尺寸下实现特征融合。我们使用临床数据的研究表明,嵌入DUSFE的网络比以前的方法产生了较低的注册误差,因此更准确的AC SPECT图像。
translated by 谷歌翻译
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts. In this work, we present a straightforward method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps. Our method differs from previous prediction-based navigation methods, such as frontier potential prediction or egocentric map completion, by directly predicting unseen targets while leveraging the global context from all previously explored areas. Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data. Once trained, the model can be incorporated into a modular pipeline for ObjectNav without the need for any reinforcement learning. We validate the effectiveness of our method on the HM3D and MP3D ObjectNav datasets. We find that it achieves the state-of-the-art on both datasets, despite not using any additional data for training.
translated by 谷歌翻译
Understanding how the statistical and geometric properties of neural activations relate to network performance is a key problem in theoretical neuroscience and deep learning. In this letter, we calculate how correlations between object representations affect the capacity, a measure of linear separability. We show that for spherical object manifolds, introducing correlations between centroids effectively pushes the spheres closer together, while introducing correlations between the spheres' axes effectively shrinks their radii, revealing a duality between neural correlations and geometry. We then show that our results can be used to accurately estimate the capacity with real neural data.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
由于一系列理想的模型属性,卷积神经网络(CNN)的使用在深度学习中被广泛扩展,这导致了有效有效的机器学习框架。但是,必须将CNN架构定制为特定任务,以结合输入长度,分辨率和尺寸的考虑因素。在这项工作中,我们通过连续的卷积神经网络(CCNN)克服了针对特定问题的CNN体​​系结构的需求:一个配备了连续卷积内核的单个CNN体系结构,可用于根据任意分辨率,维度,长度和长度的数据进行任务,而无需结构性长度变化。连续的卷积内核在每一层的远距离依赖性模型,并消除当前CNN体系结构中所需的降采样层和任务依赖性深度的需求。我们通过将相同的CCNN应用于顺序(1 $ \ mathrm {d} $)和视觉数据(2 $ \ mathrm {d} $)上的一系列任务来显示我们方法的普遍性。我们的CCNN竞争性能,并且在所有考虑的所有任务中通常都优于当前最新的。
translated by 谷歌翻译
获取大型训练集的注释是昂贵的,尤其是在行为分析设置中,准确注释所需的域知识。研究了弱监管,以减少任务级标签函数的弱标签来减少注释成本,以增加地面真理标签。但是,仍然需要域专家对每项学习任务的手工制衡功能。为了减少专业努力,我们展示了AutoSwap:一个自动综合数据高效的任务级标签功能的框架。我们方法的关键是以可重复使用的域特定语言和域级标记函数有效地代表专业知识,我们使用最先进的程序合成技术和小标记数据集以生成标签功能。此外,我们提出了一种新颖的结构多样性成本,允许直接合成具有最小开销的多样化标记功能,进一步提高标记功能数据效率。我们在三个行为分析域中评估AutoSwap,并证明AutoSwap仅使用数据的一部分来表明现有方法。我们的结果表明,Autoswap是一种有效的方法,可以自动生成标签功能,这可以显着降低行为分析的专业努力。
translated by 谷歌翻译
语音神经调节物有可能为患有扰动或休闲症的人提供沟通。最近的进展已经证明了从放置在皮质表面上的电加电网的高质量文本解码和语音合成。在这里,我们研究了较少的侵入性测量模态,即立体定向脑电图(SEEG),其提供来自多个脑区的稀疏抽样,包括皮质区域。为了评估Seeg是否也可用于综合神经录音的高质量音频,我们采用了一种基于现代深度学习方法的经常性编码器 - 解码器框架。我们证明,尽管有限的训练数据,但是可以从这些微创录音来重建高质量的言论。最后,我们利用变分特征丢失来成功识别最具信息丰富的电极触点。
translated by 谷歌翻译
We demonstrate a proof-of-concept of a large language model conducting corporate lobbying related activities. We use an autoregressive large language model (OpenAI's text-davinci-003) to determine if proposed U.S. Congressional bills are relevant to specific public companies and provide explanations and confidence levels. For the bills the model deems as relevant, the model drafts a letter to the sponsor of the bill in an attempt to persuade the congressperson to make changes to the proposed legislation. We use hundreds of ground-truth labels of the relevance of a bill to a company to benchmark the performance of the model, which outperforms the baseline of predicting the most common outcome of irrelevance. However, we test the ability to determine the relevance of a bill with the previous OpenAI GPT-3 model (text-davinci-002), which was state-of-the-art on many language tasks until text-davinci-003 was released on November 28, 2022. The performance of text-davinci-002 is worse than simply always predicting that a bill is irrelevant to a company. These results suggest that, as large language models continue to improve core natural language understanding capabilities, performance on corporate lobbying related tasks will continue to improve. We then discuss why this could be problematic for societal-AI alignment.
translated by 谷歌翻译
In the past years, deep learning has seen an increase of usage in the domain of histopathological applications. However, while these approaches have shown great potential, in high-risk environments deep learning models need to be able to judge their own uncertainty and be able to reject inputs when there is a significant chance of misclassification. In this work, we conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole-Slide-Images under domain shift using the H\&E stained Camelyon17 breast cancer dataset. Although it is known that histopathological data can be subject to strong domain shift and label noise, to our knowledge this is the first work that compares the most common methods for uncertainty estimation under these aspects. In our experiments, we compare Stochastic Variational Inference, Monte-Carlo Dropout, Deep Ensembles, Test-Time Data Augmentation as well as combinations thereof. We observe that ensembles of methods generally lead to higher accuracies and better calibration and that Test-Time Data Augmentation can be a promising alternative when choosing an appropriate set of augmentations. Across methods, a rejection of the most uncertain tiles leads to a significant increase in classification accuracy on both in-distribution as well as out-of-distribution data. Furthermore, we conduct experiments comparing these methods under varying conditions of label noise. We observe that the border regions of the Camelyon17 dataset are subject to label noise and evaluate the robustness of the included methods against different noise levels. Lastly, we publish our code framework to facilitate further research on uncertainty estimation on histopathological data.
translated by 谷歌翻译